Cortisol alters carbonic anhydrase-mediated renal sulfate secretion.
نویسندگان
چکیده
Active transepithelial sulfate secretion rate by winter flounder renal proximal tubule epithelium in primary culture (fPTC) is dependent on intracellular carbonic anhydrase (CA) and enhanced by cortisol. To further evaluate this relationship, a partial cDNA clone (327 bp) of carbonic anhydrase II (CAII) with high sequence similarity to CAII from numerous species including fish, chicken, and human was obtained from fPTCs. The majority of CA activity and CAII protein was present in the cytosol of fPTCs; however, significant amounts of both (in addition to SDS-resistant CA activity, i.e., CAIV-like isoform) were present in concentrated plasma membranes. CAII from concentrated membranes migrated differently than purified CAII on nondenaturing PAGE gels, suggesting that CAII associates with another membrane component. Treatment of fPTCs with the cell-soluble CA inhibitor methazolamide (100 microM) caused a 58% reduction in active transepithelial SO4(2-) secretion. fPTCs that were previously cultured under high-cortisol concentrations, when subjected to 5 days of low physiological levels of cortisol, had decreased CA activity (28%), CAII protein abundance (65%), and net active SO4(2-) secretion (28%), with no effect on epithelial differentiation. Methazolamide and low-cortisol treatment in combination inhibited net active SO4(2-) secretion 56%, which was not different than the effect of methazolamide treatment alone. These data indicate that cortisol directly increases renal CA activity, CAII protein abundance, and CA-dependent SO4(2-) secretion in the marine teleost renal proximal tubule.
منابع مشابه
Invited Review Role of tubular secretion and carbonic anhydrase in vertebrate renal sulfate excretion
Pelis, Ryan M., and J. Larry Renfro. Role of tubular secretion and carbonic anhydrase in vertebrate renal sulfate excretion. Am J Physiol Regul Integr Comp Physiol 287: R491–R501, 2004; 10.1152/ajpregu.00084.2004.—The renal proximal tubule of vertebrates performs an essential role in controlling plasma SO4 2 concentration ([SO4 2 ]). Although net tubular SO4 2 reabsorption is the predominate co...
متن کاملStimulation of renal sulfate secretion by metabolic acidosis requires Na+/H+ exchange induction and carbonic anhydrase.
The acute effect of metabolic acidosis on SO(4)(2-) secretion by the marine teleost renal proximal tubule was examined. Metabolic acidosis was mimicked in primary cultures of winter flounder renal proximal tubule epithelium (fPTCs) mounted in Ussing chambers by reducing interstitial pH to 7.1 (normally 7.7). fPTCs with metabolic acidosis secreted SO(4)(2-) at a net rate that was 40% higher than...
متن کاملRenal sulfate secretion is carbonic anhydrase dependent in a marine teleost, Pleuronectes americanus.
Though chemical assays indicate that carbonic anhydrase (CA) activity is present in marine teleost nephrons, CA inhibitors have no effect on urine pH or bicarbonate excretion, parameters typically CA dependent in almost all vertebrate groups. Because marine teleost renal sulfate secretion is associated with bicarbonate anion exchange, we investigated the effect of CA inhibition on transepitheli...
متن کاملTransepithelial sulfate transport by avian renal proximal tubule epithelium in primary culture.
The mechanisms and control of transepithelial inorganic sulfate (Si) transport by primary cultures of chick renal proximal tubule monolayers in Ussing chambers were determined. The competitive anion, S2 O 3 2- (5 mM), reduced both unidirectional reabsorptive and secretory fluxes and net Si reabsorption with no effect on electrophysiological properties. The carbonic anhydrase (CA) inhibitor etho...
متن کاملRole of tubular secretion and carbonic anhydrase in vertebrate renal sulfate excretion.
The renal proximal tubule of vertebrates performs an essential role in controlling plasma SO(4)(2-) concentration ([SO(4)(2-)]). Although net tubular SO(4)(2-) reabsorption is the predominate control process in terrestrial vertebrates, a facilitated secretory flux is also present. In contrast, marine teleosts obtain excess SO(4)(2-) from drinking, and increased plasma [SO(4)(2-)] is prevented p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 285 6 شماره
صفحات -
تاریخ انتشار 2003